

Verticale Bus Expansion Module

ZMI0310

Vision Motion Controller

Motion Controller

Motion Control Card

IO Expanion Module

HMI

Foreword

Zmotion[®]

The motion controller provides rich interface, and it has excellent motion control performance, which can meet the expansion requirements of various projects.

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the written permission of the Zmotion Technology, no person shall reproduce, translate and copy any content in this manual. The above-mentioned actions will constitute an infringement of the copyright of the company's manual, and Zmotion will investigate legal responsibility according to law.

For details about the ZMC controller software and the introduction and routine of each command, please refer to the ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in design and functions and other aspects, Zmotion Technology reserves the final interpretation! Subject to change without notice!

Pay attention to safety when debugging the machine!

Please be sure to design an effective safety protection device in the machine, and add an error handling program in the software, otherwise Zmotion has no obligation or responsibility for the loss caused.

In order to ensure the safe, normal and effective use of the product, please be sure to read this product manual carefully before installing and using the product.

Safety Statement

- This chapter describes the safety precautions required for the correct use of this product. Before
 using this product, please read the instructions for use and correctly understand the relevant
 information on safety precautions.
- This product should be used in an environment that meets the design specifications, otherwise
 it may cause equipment damage or personal injury, and malfunctions or component damage
 caused by failure to comply with relevant regulations are not within the scope of product quality
 assurance.
- Zmotion will not take any legal responsibility for personal safety accidents and property losses caused by failure to comply with the contents of this manual or illegal operation of products.

Safety Level Definition

According to the level, it can be divided into "Danger" and "Caution". Failure to operate as required may result in moderate injury, minor injury or equipment damage.

Please keep this guide in a safe place for reading when needed, and be sure to hand this manual to the end user.

Install

Danger

- When the controller is disassembled, all external power supplies used by the system should be disconnected before operation, otherwise it may cause misoperation or damage to the equipment.
- It is forbidden to use in the following places: places with dust, oil fume, conductive dust, corrosive gas and flammable gas; places exposed to high temperature, condensation, wind and rain; places with vibration and shock. Electric shock, fire and misuse can cause product damage and deterioration.

Notice

- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ After installation, ensure that there are no foreign objects on the hardware circuit board.
- When installing, make it tightly and firmly with the mounting frame.

• Improper installation of the controller may result in misoperation, failure and fire.

Wiring

The specifications and installation methods of the external wiring of the equipment shall comply with the requirements of local power distribution regulations.

- Danger
- When wiring, all external power supplies used by the system should be disconnected before operation.
- When powering on and running after the wiring work is completed, the terminals attached to the product must be installed.
- Cable terminals should be well insulated to ensure that the insulation distance between cables will not be reduced after the cables are installed on the terminal block.
- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ The cable connection should be carried out correctly on the basis of confirming the type of the connected interface.

- Notice
- It should be confirmed that the cables pressed into the terminals are in good contact.
- Do not bundle the control wires and communication cables with the main circuit or power supply wires, etc., and the distance between the wires should be more than 100 mm, otherwise noise may cause malfunction.
- ◆ If the controller is not installed properly, it may cause electric shock or equipment failure or malfunction.

CONTENT

Cha	Chapter I Introduction3					
	1.1.	Produ	ct Introduction	3		
	1.2.	Functi	ion Features	3		
	1.3.	Syster	m Architecture	4		
Cha	apter	II Produc	t Information	5		
	2.1.	Name	plate Information	5		
	2.2.	Order	Information	6		
	2.3.	Power	Requirement	6		
	2.4.		Environment			
Cha	apter		er Module			
	3.1.	ZMIO	310-ECAT Communication Module	8		
		3.1.1.	Interface Definition	8		
		3.1.2.	Performance & Specification	9		
		3.1.3.	Installation Size	9		
		3.1.4.	EtherCAT Bus Interface Description	10		
		3.1.5.	Terminal Definition	12		
		3.1.6.	Malfunction Indication and Solution	13		
	3.2.	ZMIO	310-CAN Communication Module	14		
		3.2.1.	Interface Definition	14		
		3.2.2.	Performance & Specification	14		
		3.2.3.	Installation Size	15		
		3.2.4.	DIP Switch Description	16		
		3.2.5.	Terminal Definition	16		
		3.2.6.	Malfunction Indication and Solution	18		
Cha	pter	IV Expan	sion Sub-Module	19		
	4.1.	ZMIO	310-16DI: Digital Input Module	19		
		4.1.1.	Interface Definition	19		
		4.1.2.	Performance Description	19		
		4.1.3.	Installation Size	20		
		4.1.4.	Terminal Definition	21		
		4.1.5.	Wiring Method	22		
		4.1.6.	Malfunction Indication and Solution	24		
	4.2.	ZMIO	310-16DO/DOP. Digital Output Module	24		
		4.2.1.	Interface Definition	24		
		4.2.2.	Performance & Specification	25		
		4.2.3.	Installation Size	26		
		4.2.4.	Terminal Definition	26		
		4.2.5.	Wiring Method	28		

	4.2.6.	Malfunction Indication and Solution	29
4.3.	ZMIO	310-4AD: Analog Input Module	30
	4.3.1.	Interface Definition	30
	4.3.2.	Performance & Specification	30
	4.3.3.	Installation Size	31
	4.3.4.	Terminal Definition	32
	4.3.5.	Wiring Method	33
	4.3.6.	Malfunction Indication and Solution	35
4.4.	ZMIO	310-4DA: Analog Output Module	36
	4.4.1.	Interface Definition	36
	4.4.2.	Performance & Specification	36
	4.4.3.	Installation Size	37
	4.4.4.	Terminal Definition	37
	4.4.5.	Wiring Method	39
	4.4.6.	Malfunction Indication and Solution	40
Chapter	V Usage	Description	41
5.1.	Powe	r Consumption Calculation Example	41
5.2.	IO Sta	rting Number Configuration	41
	5.2.1.	EtherCAT Bus Expansion	41
	5.2.2.	CAN Bus Expansion	
5.3.	Read	& Write Digital, Analog	45
5.4.	Local	Behind-level Expansion Address Description	45
5.5.	Funct	ion Configuration	46
Chapter	VI Data [Dictionary Description	48
6.1.	Forma	at Description	48
6.2.	Data I	Dictionary Overview	48
6.3.	Data I	Dictionary Details	49
6.4.	Expan	sion Example	
	6.4.1.	Expansion Submodule Address Allocation	60
	6.4.2.	Output State Configuration after Communication Breaks	
	6.4.3.	Channel Enable Configuration	61
	6.4.4.	Range-Switch Configuration	62
	6.4.5.	Get Channel Input State Value of AD Module	63
	6.4.6.	Get Channel Input State Value of DI Module	64
	6.4.7.	Configure Channel Output Value of DO Module	
	6.4.8.	Configure Channel Output Value of DA Module	
Chapter		and Maintain	
7.1.	_	ar Inspection and Maintenance	
7.2.	Comn	non Problems	68

Chapter I Introduction

1.1.Product Introduction

ZMIO310 Series expansion module is a kind of vertical fieldbus expansion module, which supports EtherCAT and ZCAN fieldbus to expand IO, AD and DA. When IO, AD and DA are not enough, it needs a coupler module (ECAT or CAN communication module) matched with other submodules (input/output/AD/DA module) to expand. One coupler supports 16 sub expansion modules at most.

This manual mainly describes ZMIO310 specification, property, usage, etc. Please read this manual carefully to know more about the product, and then you could use more safely.

1.2. Function Features

- Digital inputs and outputs are with signal indication lights, which are used to check
 IO states.
- The resolution of analog is 16-bit, there are voltage type or current type, and there are multiple ranges.
- One single coupler can extend 256 inputs or 256 outputs at most. If you need more, please select several couplers.
- One single coupler can extend 32 ADs or 32 DAs at most. If you need more, please select several couplers.
- It is convenient to do expansion wiring.



1.3. System Architecture

→ EtherCAT Bus Expansion Module:

→ CAN Bus Expansion Module:

Chapter II Product Information

2.1. Nameplate Information

Here shows ZMIO310-ECAT, others are the same rule.

EtherCAT总线从站通讯模块

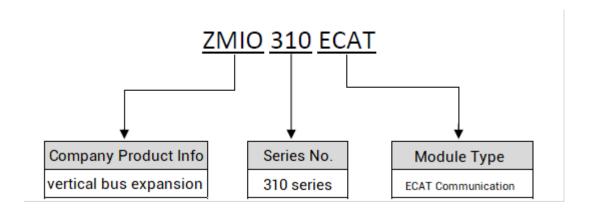
产品名称:扩展模块

产品型号: ZMIO310-ECAT

外形尺寸: 95*32mm 输入规格: 24V, 2.5A

制造商:深圳市正运动技术有限公司

EtherCAT Bus Slave Station Communication Module


product name: expansion module product model: ZMIO310-ECAT

Size: 95*32mm

input specification: 24V, 2.5A

manufacturer: Shenzhen Zmotion Technology Co.,

→ Model description:

2.2. Order Information

Product name	In	Out	AD	DA	Communication interface	Function
ZMI0310-					EtherCAT	ECAT communication
ECAT		-			Ethercar	module
ZMI0310-					CAN	CAN communication
CAN		-			CAN	module
ZMI0310-	16					Input module
16DI	10	-			-	(NPN/PNP)
ZMI0310-		16				Output module
16DO	-	10			-	(NPN)
ZMI0310-		16				Output module
16DOP	-	10			-	(PNP)
ZMI0310-			4			AD module
4AD		-	4	-	(16 Bit)	
ZMI0310-				DA module		
4DA		-		4		(16 Bit)

2.3. Power Requirement

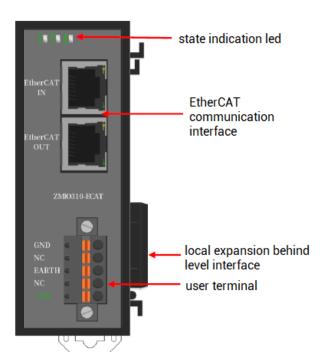
This expansion module uses dual-power supply, that is, one coupler module ZMIO310-ECAT or ZMIO310-CAN uses one power supply, then one submodule uses another power supply (when there is enough power for power supply, submodules can use one power supply, but submodule and coupler module can't use the same one power).

Model/Item	Power Voltage	Current to open	Current to work
ZMIO310-ECAT	Coupler main	1A	0.5A
	power, DC24V is		
ZMIO310-CAN	recommended.	0.2A	0.1A
	18V-36V is max.		
ZMIO310-16DI	Submodule power	0.2A	0.1A
ZMI0310-16D0	supply, DC24V is	0.2A	0.1A
ZMI0310-16D0P	recommended.	1A	0.5A
ZMIO310-4AD	18V-36V is max.	0.2A	0.1A

ZMIO310-4DA	0.2A	0.1A
-------------	------	------

2.4. Work Environment

	Item	Parameters	
Work T	emperature	-10℃-55℃	
Work rela	ative Humidity	10%-95% non-condensing	
Storage	Temperature	-40°C ~ 80°C (not frozen)	
Storage Humidity		Below 90%RH (no frost)	
	Frequency	5-150Hz	
vibration	Displacement	3.5mm(directly install)(<9Hz)	
Vibration	Acceleration	1g(directly install)(>9Hz)	
	Direction	3 axial direction	
Shock (collide)		15g, 11ms, half sinusoid, 3 axial direction	
Degree of Protection		IP20	



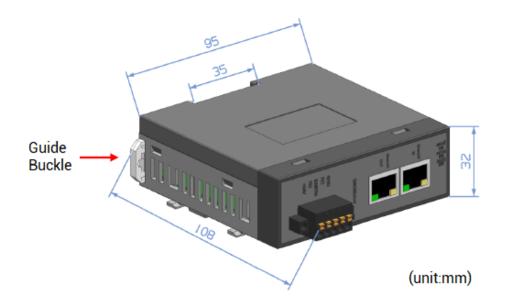
Chapter III Coupler Module

Coupler modules include ZMIO310-ECAT communication module and ZMIO310-CAN communication module.

3.1.ZMIO310-ECAT Communication Module

3.1.1.Interface Definition

Mark	Interface	Number	Description
POW	The led that	1	Power state: green, it lights when power is conducted.
RUN		1	Run state: green, it lights when runs normally
ALM	current state.	1	Error state: red, it lights when runs incorrectly
EtherCAT Communication	EtherCAT IN	1	EtherCAT input, used to connect EtherCAT master station or former level EtherCAT slave station.
Interface	EtherCAT OUT	1	EtherCAT output, used to connect EtherCAT slave station.
Local expansion beh	ind level interface	1	Connect to expansion submodules, plug in and pull out when in hot are unsupported.

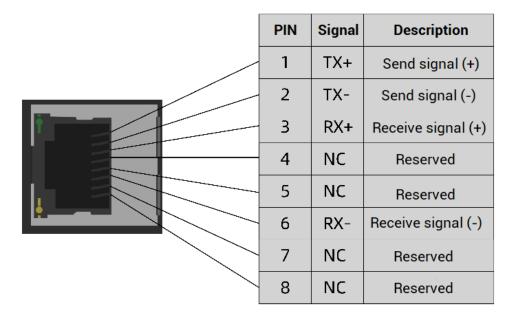


User terminal	1	Power terminal
---------------	---	----------------

3.1.2. Performance & Specification

ltem	Specification
Power Voltage	24V DC
Communication Protocol	EtherCAT Industrial Real-time Bus Protocol
Service	CoE (PDO, SDO), firmware upgrade
Communication Cycle	250μs, 500μs, 1ms, 2ms, 4ms, etc.
Max Communication Speed	Ethernet 100Mbqs
Network Port	Standard Ethernet RJ45 interface
Transfer Medium	5E Category STP
Transfer Distance	Distance between two nodes is less than 100m
	Up to16 input/output modules are expanded, or 8 AD/DA
Continuation Sub Module Expansion	modules, the total number can be up to 16, the actual
	number depends on each module's power.
Max IOs of Continuation Sub Module	256 inputs or 256 outputs
Max AIOs of Continuation Sub Module	32 ADs or 32 DAs
Power	1.6W
Internal power for behind level	8.4W

3.1.3.Installation Size



→ Installation Step:

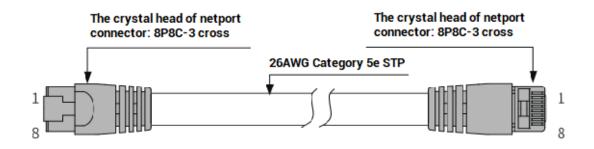
- Please use 35mm standard DIN guide rail.
- > Open guide rail buckle of ECAT communication module, then embed ECAT communication module in the DIN guide rail.
- Press and fit guide rail buckle of ECAT communication module, then fix ECAT communication module in the DIN guide rail.

3.1.4. Ether CAT Bus Interface Description

ZMIO310-ECAT communication module has 2 100M EtherCAT communication interfaces, and it supports EtherCAT protocol. The pin definition is as follows:

→ Specification

Item	Specification
Communication protocol	EtherCAT protocol
Valid service	CoE(PDO, SDO), FoE
Cynobronization mothod	IO adopts input and output synchronization / DC-
Synchronization method	distributed clock
Physical level	100BASE-TX
Duplex mode	Full duplex
Topology	linear topology



Transfer media	Cable		
Transfer distance	It is less than 100M between 2 nodes		
Process data	Maximum 1486 bytes of one single frame		
Synchronization shaking	.1		
of two slave stations	<1us		
Refresh	For 1000 digital inputs and outputs, it is about 30us		

→ Communication Cable Requirements

Both ETHERNET communication interface and EtherCAT communication interface adopt standard Ethernet RJ45 interface.

The network cable adopts Category 5e STP, and the crystal head has a metal shell to reduce interference and to prevent information from being eavesdropped. As shown below:

Item	Specification
Cable type	Flexible crossover cable, Category 5e
traverse	twisted pair
Line pairs	4
Isolation	cross skeleton
Connector	Crystal head with iron shell
Cable material	PVC
Cable length	Less than 100m

Use RJ45 network cable connection method:

- When installing, hold the crystal head that is with the cable and insert it into the RJ45 interface until it makes a "click" sound (kada).
- In order to ensure the stability of communication, please fix the cables with cable ties.
- When disassembling, press the tail mechanism of the crystal head, and pull out the

connector and the module in a horizontal direction.

- Please use tube-type pre-insulated terminals and cables with appropriate wire diameters to connect the user terminals.
- Please don't mix EtherCAT IN and EtherCAT OUT interface. EtherCAT IN interface is
 used to connect with EtherCAT of master station (the controller) or EtherCAT OUT
 interface of front-level slave station (servo/ECAT communication module), EtherCAT
 OUT interface is used to connect to EtherCAT IN interface of behind level station
 (servo / ECAT / communication module).

3.1.5. Terminal Definition

→ Main power terminal

Number	Mark	Туре	Function
1	+24V	Positive pole of power	Positive pole to input 24V power
2	NC	-	Reserved
3	EARTH	-	Shield
4	NC	-	Reserved
5	GND	Negative pole of power	Negative pole to input 24V power

→ Terminal Wiring

(Please use tubular pre-insulated terminals and wire cable that is suitable to wire path to do user terminal wiring)

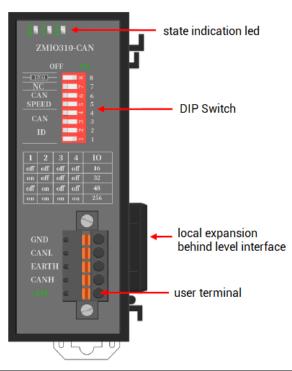
→ Cable production steps:

- Strip the cable insulation, the exposed copper part depends on the size of the tubetype pre-insulated terminal.
- > Pass the conductor part of the cable into the tubular pre-insulated terminal and crimp it with a crimping pliers.

→Wire cable connection steps:

- Press the spring of the terminal to insert the cable with the tubular pre-insulated terminal into the port.
- Loosen the spring of the terminal, pull the cable lightly to check whether the cable is

firmly connected.


3.1.6. Malfunction Indication and Solution

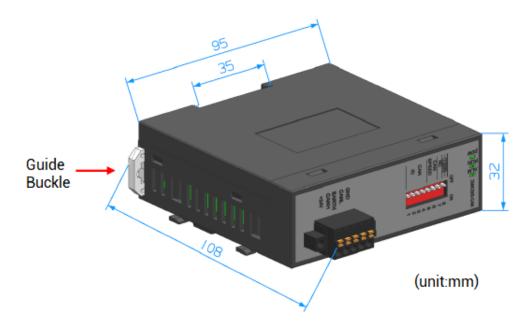
Statu	Status Indication Light		Pencon		Solution	
POW	RUN	ERR	Reason		Solution	
ON	twinkle a	lternately	The communication	#	Check if crystal head is loosened or not	
	and s	lowly	between EtherCAT	4	Check the net cable is damaged or not	
			master station and	4	Restart the power.	
			coupler module breaks			
ON	twinkle alternately		The pre-scanned sub	#	Check if the continuation submodule is	
	and rapidly		module and actual		lost, or be in malfunction	
			continuation sub	4	Check if appears hot plug or discharger	
			module are not totally	4	Restart the power.	
			matched.			

3.2.ZMIO310-CAN Communication Module

3.2.1.Interface Definition

Mark	Interface	Number	Description
POW	The led that	1	Power state: green, it lights when power is conducted.
RUN	current state.	1	Run state: green, it lights when runs normally
ALM	current state.	1	Error state: red, it lights when runs incorrectly
DIP Switch	DIP Switch	1	8 dial codes, CAN address, CAN speed and conduction of CAN120 ohm terminal resistor can be selected.
Local expansion beh	ind level interface	1	Connect to expansion submodules, plug in and pull out when in hot are unsupported.
User terr	minal	1	Power terminal

3.2.2.Performance & Specification


ltem	Specification	
Power Voltage	24V DC	

Communication interface	CAN Bus interface
The number can be connected	16 CAN slave station modules can be connected at most
Transfer Distance	Less than 40m
Address Setting	DIP
	Up to 6 input / 6 output modules are expanded, or 3 AD/DA
Continuation Sub Module Expansion	modules, the total number can be up to 16, the actual
	number depends on each module's power.
Power	0.6W
Internal power for behind level	7.9W
Service	Firmware upgrade

Note: new version updated module program, it added the alarm function when the number of submodules exceeds the limitation of coupler.

3.2.3.Installation Size

\rightarrow Installation Step:

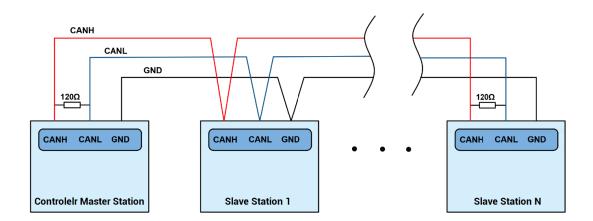
- Please use 35mm standard DIN guide rail.
- ➤ Open guide rail buckle of CAN communication module, then embed CAN communication module in the DIN guide rail.
- Press fit guide rail buckle of CAN communication module, then fix CAN communication module in the DIN guide rail.

3.2.4.DIP Switch Description

The ZMIO310-CAN expansion module generally has an 8-bit DIP switch, dial ON to take effect, and the meaning of the DIP is as follows:

- 1-4: these are CAN ID, used to map IO address of CAN expansion module, the corresponding values are 0-15, different codes relate to different IO starting No.
- 5-6: CAN communication speed, corresponding values are 0-3, there are four different speeds.
 - 7: reserved.
- 8: 120 ohm resistor, dial ON means a 120 ohm resistor is connected between CANL and CANH.

More details of expansion IO address mapping and communication speed, please refer to 5.2.2 CAN Bus Expansion Description.


3.2.5. Terminal Definition

→ CAN Bus & Main power terminal

Number	Mark	Туре	Function
1	+24V	Positive pole of power	Positive pole to input 24V power
2	CANH	CAN Bus	CAN differential data H
3	EARTH	Shield	Shield
4	CANL	CAN Bus	CAN differential data L
5	GND	Power ground	Negative pole to input 24V power

→ CAN Bus Wiring Method

- The CAN bus communication parties must ensure that the corresponding GND is connected, or the main power supply of the communication parties uses the same power supply, otherwise the CAN may be burned.
- When connecting multiple CAN expansion modules, all CANH terminals, all CANL terminals should be connected, and then dial ON for the eighth digit of the last expansion module, which means please do not dial bit-8 of other modules.

→ Terminal Wiring

- When expand through CAN, it is recommended to use STP, and the shield layer is grounded.
- Please use tubular pre-insulated terminals and wire cable that is suitable to wire path to do user terminal wiring

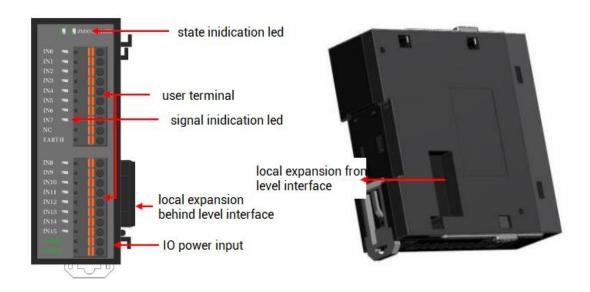
→ Cable production steps:

- Strip the cable insulation, the exposed copper part depends on the size of the tubetype pre-insulated terminal.
- Pass the conductor part of the cable into the tubular pre-insulated terminal and crimp it with a crimping pliers.

→Wire cable connection steps:

- Press the spring of the terminal to insert the cable with the tubular pre-insulated terminal into the port.
- Loosen the spring of the terminal, pull the cable lightly to check whether the cable is firmly connected.

3.2.6. Malfunction Indication and Solution

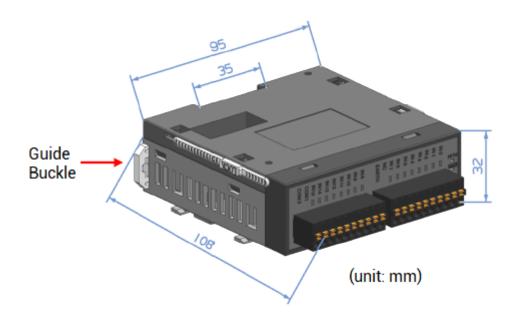

Status Indication Light		Reason	Solution	
POW	RUN	ERR	Reason	Solution
				4 Check whether CAN bus terminal wiring is
			CAN	correct.
ON	ON	ON	communicate	Check whether 120ohm resistor is connected.
			abnormally.	Check whether the same hardware ID is used by
				multiple CAN communication modules.

Chapter IV Expansion Sub-Module

4.1.ZMIO310-16DI: Digital Input Module

4.1.1.Interface Definition

Mark	Interface	Number	Description
RUN	The light	1	Run state: green, it lights when runs normally
ERR	indicates states.	1	Error state: red, it lights when runs incorrectly
			Connect to coupler modules or expansion
Local expansion fro	ont level interface	1	submodules, plug in and pull out when in hot
			are unsupported.
Local expansion hal	aind lovel interface	1	Connect to expansion submodules, plug in
Local expansion behind level interface		-	and pull out when in hot are unsupported.
Signal indicator	Signal indicator IO signal indicator		Correspond to each signal indicator.
User te	minal	1	16 digital inputs/power terminal


4.1.2. Performance Description

Item	Specification
Power Voltage	24V DC
The number of inputs	16

Type of input	Digital input	
Voltage input method (newer cumplied	PNP (COM1 is connected to 24V power -, COM2 is	
Voltage input method (power supplied	connected to 24V power +) or NPN (COM1 is connected to	
by IO)	24V power +, COM2 is connected to 24V power -)	
Current (input)(typical)	NPN type (-4.8mA), PNP type (+4.8mA)	
Impedance (input)	4.7ΚΩ	
Frequency (input)	<5kHz	
Action showing (input)	When input is ON, the input indication led will be ON.	
Voltage when ON	PNP Type >7.2V or NPN type <14.5V	
Voltage when OFF	PNP Type >6.8V or NPN type <14.7V	
Internal Power	0.3W	
Power	1.9W	
Isolation	Optocoupler isolation	

4.1.3.Installation Size

\rightarrow Installation Step:

- Please use 35mm standard DIN guide rail.
- > Open guide rail buckle of input module, then embed input module in the DIN guide rail.
- > Press fit guide rail buckle of input module, then fix input module in the DIN guide rail.

4.1.4. Terminal Definition

ightarrow 16 Digital Inputs / IO Power Terminal

Number	Mark	Туре	Function
1	IN0	Input	Input 0
2	IN1	Input	Input 1
3	IN2	Input	Input 2
4	IN3	Input	Input3
5	IN4	Input	Input 4
6	IN5	Input	Input 5
7	IN6	Input	Input 6
8	IN7	Input	Input 7
9	NC	Input	Input 8
10	EARTH	Input	Input 9
11	IN8	-	Reserved
12	IN9	-	Shield
13	IN10	Input	Input 10
14	IN11	Input	Input 11
15	IN12	Input	Input 12
16	IN13	Input	Input 13
17	IN14	Input	Input 14
18	IN15	Input	Input 15
19	COM1	Power supply	Power terminal 1
20	COM2	Power supply	Power terminal 2

→ Terminal Wiring

Please use tubular pre-insulated terminals and wire cable that is suitable to wire path to do user terminal wiring

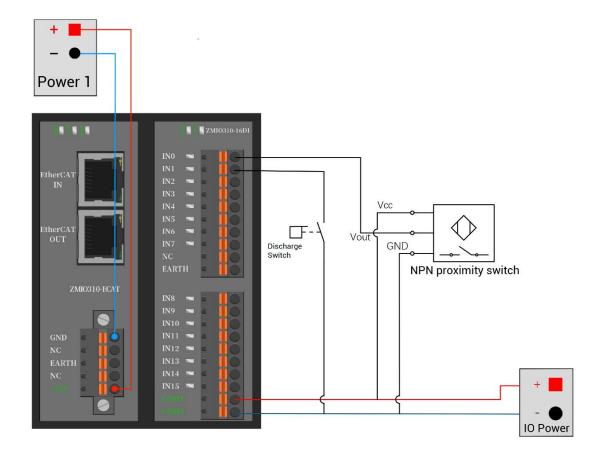
→ Cable production steps:

- Strip the cable insulation, the exposed copper part depends on the size of the tubetype pre-insulated terminal.
- Pass the conductor part of the cable into the tubular pre-insulated terminal and crimp

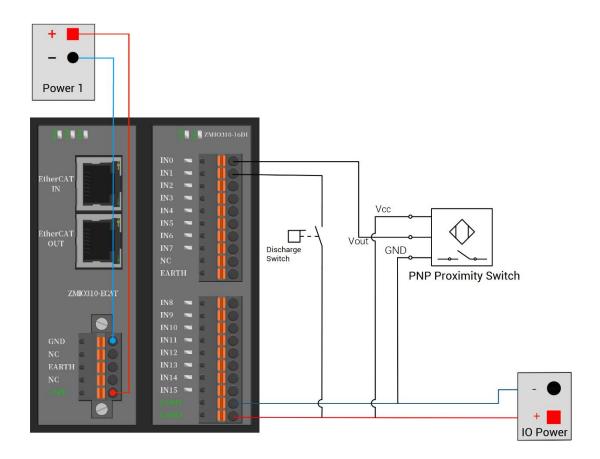
it with a crimping pliers.

→Wire cable connection steps:

- Press the spring of the terminal to insert the cable with the tubular pre-insulated terminal into the port.
- Loosen the spring of the terminal, pull the cable lightly to check whether the cable is firmly connected.

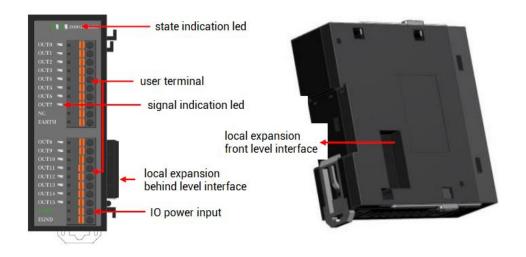

→Note:

- When routing terminal cables, avoid bundling them with cables with strong interference signals such as power cables, and route them separately.
- In the case of serious electromagnetic interference on site, shielded cables should be selected to improve the anti-interference ability.
- It is not recommended to use the same power supply for the coupler module and the expansion sub-module. Especially in the case of severe electromagnetic interference on site, different power supplies must be used and they must not share the same ground.


4.1.5. Wiring Method

→ Input Terminal NPN Wiring:

→ Input Terminal PNP Wiring:

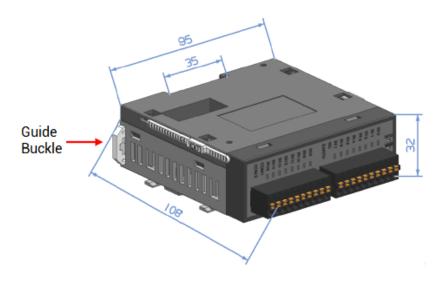

4.1.6. Malfunction Indication and Solution

Status Indication Light		Reason	Solution	
RUN	ERR	neason	Solution	
ON	ON	CAN communicate abnormally.	 Check whether CAN bus terminal wiring is correct. Check whether 120ohm resistor is connected. Check whether the same hardware ID is used by multiple CAN communication modules. 	
OF	OFF	The pre-scanned sub module and actual continuation sub module are not totally matched.	 Check if the continuation submodule is lost, or be in malfunction Check if appears hot plug or discharger Restart the power. 	

4.2.ZMIO310-16DO/DOP. Digital Output Module

There are two types of digital output modules, NPN and PNP. Please note their power input wiring and IO wiring are different.

4.2.1.Interface Definition


Mark	Interface	Number	Description
RUN	RUN The light		Run state: green, it lights when runs normally
ERR	indicates states.	1	Error state: red, it lights when runs incorrectly
Local expansion front level interface		1	Connect to coupler modules or expansion submodules, plug in and pull out when in hot are unsupported.
Local expansion behind level interface		1	Connect to expansion submodules, plug in and pull out when in hot are unsupported.
Signal indicator	IO signal indicator	1	Correspond to each signal indicator.
User terminal		1	16 digital outputs / power terminal

4.2.2.Performance & Specification

14	Specification		
Item	ZMI0310-16D0	ZMI0310-16D0P	
Power voltage	24VDC		
The number of outputs	16		
The type of output	Digital	output	
The method of output	Leakage (NPN, it is low electric	Source (PNP, it is high electric	
The method of output	level when there is output)	level when there is output)	
Output overcurrent protection	Max is 300mA, and the max tripping current is 600mA.		
The max leakage current when	25μΑ	254	
OFF	ΖυμΑ	25μΑ	
Respond time when OFF	12µs	12µs	
Respond time when ON	80µs	60µs	
Internal power	0.3W		
Power	1.3W		
Isolation	Coupler isolation		
Frequency (output)	<8kHz		
Action showing (output)	When the output is ON, output indication led will be ON.		
Service	Firmware upgrade		

4.2.3. Installation Size

\rightarrow Installation Step:

- > Please use 35mm standard DIN guide rail.
- > Open guide rail buckle of output module, then embed output module in the DIN guide rail.
- > Press fit guide rail buckle of output module, then fix output module in the DIN guide rail.

4.2.4. Terminal Definition

ightarrow 16 Digital Outputs / IO Power Terminal

Number	Mark	Туре	Function
1	OUT0	Output	Output 0
2	OUT1	Output	Output 1
3	OUT2	Output	Output 2
4	OUT3	Output	Output 3
5	OUT4	Output	Output 4
6	OUT5	Output	Output 5
7	OUT6	Output	Output 6
8	OUT7	Output	Output 7
9	NC	Output	Output 8

10	EARTH	Output	Output 9
11	OUT8	-	Reserved
12	OUT9	-	Shield
13	OUT10	Output	Output 10
14	OUT11	Output	Output 11
15	OUT12	Output	Output 12
16	OUT13	Output	Output 13
17	OUT14	Output	Output 14
18	OUT15	Output	Output 15
19	E+24V	Power supply (+)	24V power input (+)
20	EGND	Power supply (-)	24V power input (-)

→ Terminal Wiring

Please use tubular pre-insulated terminals and wire cable that is suitable to wire path to do user terminal wiring

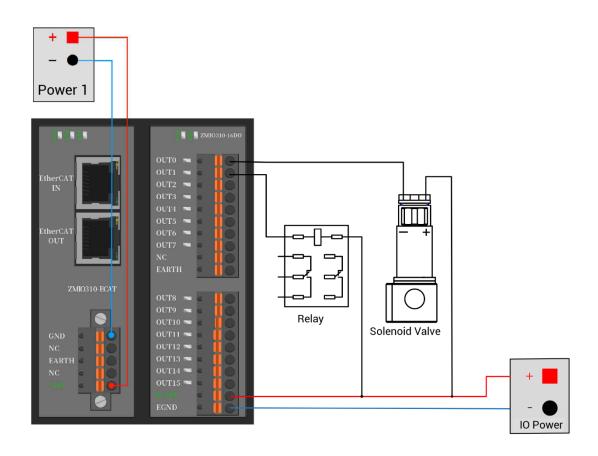
→ Cable production steps:

- > Strip the cable insulation, the exposed copper part depends on the size of the tubetype pre-insulated terminal.
- Pass the conductor part of the cable into the tubular pre-insulated terminal and crimp it with a crimping pliers.

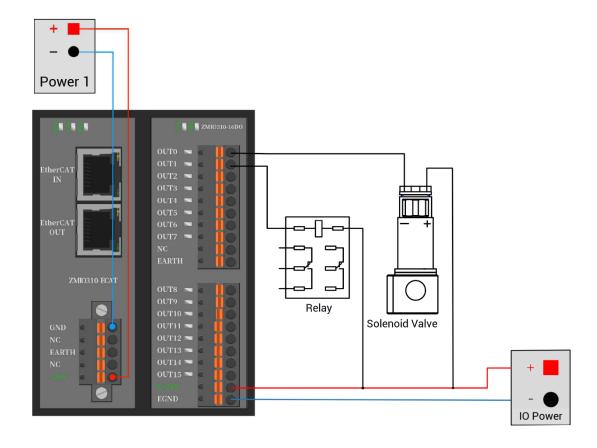
→Wire cable connection steps:

- Press the spring of the terminal to insert the cable with the tubular pre-insulated terminal into the port.
- Loosen the spring of the terminal, pull the cable lightly to check whether the cable is firmly connected.

→Note:


- When routing terminal cables, avoid bundling them with cables with strong interference signals such as power cables, and route them separately.
- In the case of serious electromagnetic interference on site, shielded cables should be selected to improve the anti-interference ability.
- > It is not recommended to use the same power supply for the coupler module and the

expansion sub-module. Especially in the case of severe electromagnetic interference on site, different power supplies must be used and they must not share the same ground.


4.2.5. Wiring Method

→ Output Terminal NPN Wiring:

→ Output Terminal PNP Wiring:

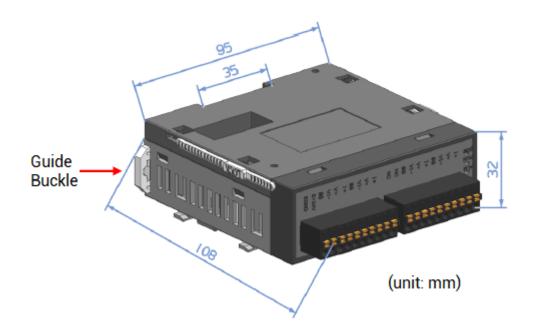
4.2.6. Malfunction Indication and Solution

Status Indication Light		Pagan	Solution	
RUN	ERR	Reason	Solution	
ON	ON	Communication between coupler and expansion submodule breaks.	 Check whether the local expansion behind level interface is loosened. Restart the power. 	
OF	OFF	The pre-scanned sub module and actual continuation sub module are not totally matched.	 Check if the continuation submodule is lost, or be in malfunction Check if appears hot plug or discharger Restart the power. 	

4.3.ZMIO310-4AD: Analog Input Module

4.3.1.Interface Definition

Mark	Interface	Number	Description
RUN		1	Run state: green, it lights when runs normally
POW	The light indicates states.	1	Power state: green, it lights when power is conducted.
ERR		1	Error state: red, it lights when runs incorrectly
Local expansion front level interface		1	Connect to coupler modules or expansion submodules, plug in and pull out when in hot are unsupported.
Local expansion behind level interface		1	Connect to expansion submodules, plug in and pull out when in hot are unsupported.
Signal indicator	IO signal indicator	1	Correspond to each signal indicator.
User terminal		1	4-channel analog inputs/power terminal


4.3.2. Performance & Specification

Item	Specification
Power Voltage	24V DC
The number of channel inputs	4

Impedance of voltage (input)	>1ΜΩ	
Range of voltage (input)	Dual-pole: -5V~5V, -10V~10V. Single-pole: 0~5V, 0~10V.	
Range of current (input)	0~20mA, 4~20mA	
Resolution	16-bit	
Sample time	1ms/channel	
Precision (common temperature 25°C)	Voltage ± 0.1%, current ± 0.1% (full range)	
Precision (environmental temperature	Voltage ± 0.3%, current ± 0.8%	
0~55°C)		
Internal Power	0.4W	
Power	0.7W	
Isolation	Coupler isolation	
Service	Firmware upgrade	

4.3.3.Installation Size

$\rightarrow \textbf{Installation Step:}$

- > Please use 35mm standard DIN guide rail.
- > Open guide rail buckle of AD module, then embed AD module in the DIN guide rail.
- > Press fit guide rail buckle of AD module, then fix AD module in the DIN guide rail.

4.3.4. Terminal Definition

ightarrow 4-Channel Analog Inputs / IO Power Terminal

Number	Mark	Туре	Function
1	l+	Current input (+)	Channel 0 current input (+)
2	V+	Voltage input (+)	Channel 0 voltage input (+)
3	V-	Voltage input (-)	Channel 0 voltage input (-)
4	SG	-	Shield
5	l+	Current input (+)	Channel 1 current input (+)
6	V+	Voltage input (+)	Channel 1 voltage input (+)
7	V-	Voltage input (-)	Channel 1 voltage input (-)
8	SG	-	Shield
9	AGND	Current input (-)	Public current input (-)
10	NC	-	Reserved
11	l+	Current input (+)	Channel 2 current input (+)
12	V+	Voltage input (+)	Channel 2 voltage input (+)
13	V-	Voltage input (-)	Channel 2 voltage input (-)
14	SG	-	Shield
15	l+	Current input (+)	Channel 3 current input (+)
16	V+	Voltage input (+)	Channel 3 voltage input (+)
17	V-	Voltage input (-)	Channel 3 voltage input (-)
18	SG	-	Shield
19	E+24V	Power supply (+)	24V power supply input (+)
20	EGND	Power supply (-)	24V power supply input (-)

→ Terminal Wiring

Please use tubular pre-insulated terminals and wire cable that is suitable to wire path to do user terminal wiring

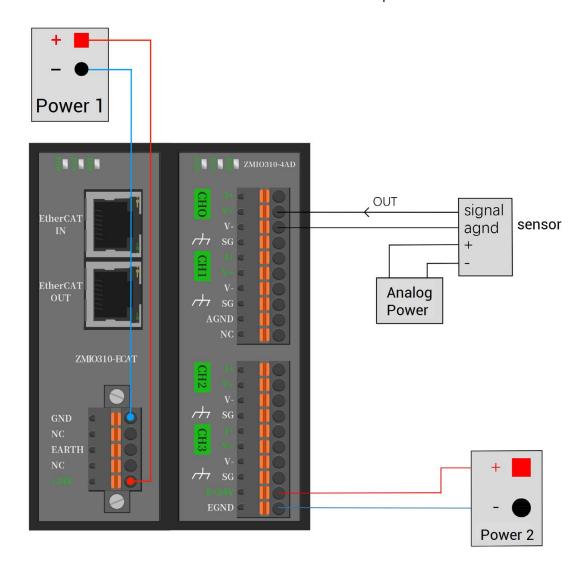
→ Cable production steps:

- > Strip the cable insulation, the exposed copper part depends on the size of the tubetype pre-insulated terminal.
- Pass the conductor part of the cable into the tubular pre-insulated terminal and crimp

it with a crimping pliers.

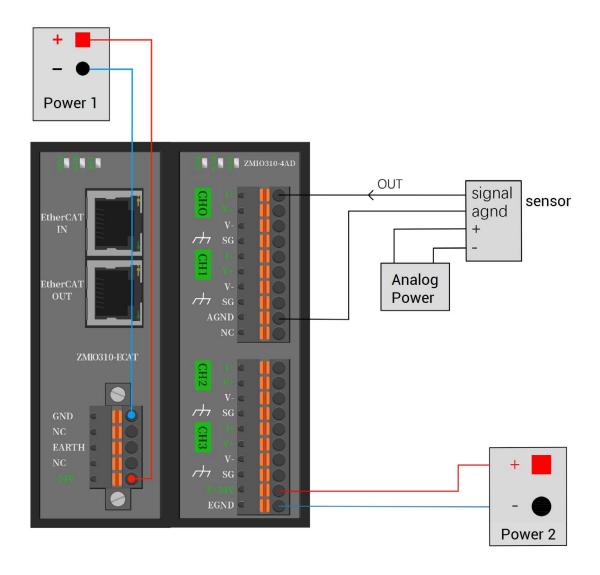
→Wire cable connection steps:

- Press the spring of the terminal to insert the cable with the tubular pre-insulated terminal into the port.
- ➤ Loosen the spring of the terminal, pull the cable lightly to check whether the cable is firmly connected.

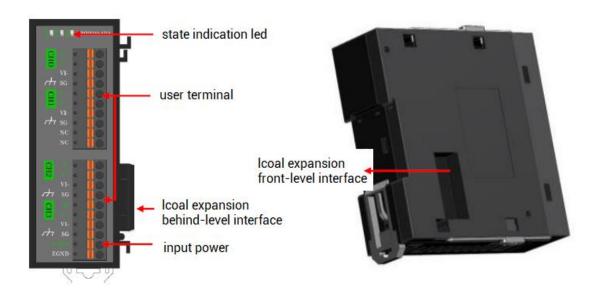

→Note:

- When routing terminal cables, avoid bundling them with cables with strong interference signals such as power cables, and route them separately.
- In the case of serious electromagnetic interference on site, shielded cables should be selected to improve the anti-interference ability.
- It is not recommended to use the same power supply for the coupler module and the expansion sub-module. Especially in the case of severe electromagnetic interference on site, different power supplies must be used and they must not share the same ground.

4.3.5. Wiring Method


→ Voltage Input Terminal Wiring:

→ Current Input Terminal Wiring:

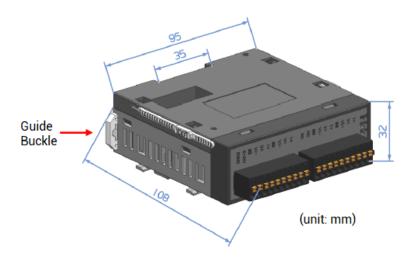

4.3.6. Malfunction Indication and Solution

Status Indication Light		n Light	Reason		Solution	
POW	RUN	ERR	Reason	Solution		
			Communication between	4	Check whether local expansion behind-	
ON ON	ON	ON ON	coupler and expansion	-	level interface is loosened.	
			sub-module breaks.		lever interface is loosened.	
	ON OFF		The pre-scanned sub	4	Check if the continuation submodule is	
ON			module and actual		lost, or be in malfunction	
UN			continuation sub module	4	Check if appears hot plug or discharger	
			are not totally matched.	4	Restart the power.	

4.4.ZMIO310-4DA: Analog Output Module

4.4.1.Interface Definition

Mark	Interface	Number	Description
RUN	RUN		Run state: green, it lights when runs normally
POW The light indicates states.		1	Power state: green, it lights when power is conducted.
		1	Error state: red, it lights when runs incorrectly
Local expansion fro	nt level interface	1	Connect to coupler modules or expansion submodules, plug in and pull out when in hot are unsupported.
Local expansion beh	ind level interface	1	Connect to expansion submodules, plug in and pull out when in hot are unsupported.
User teri	minal	1	4-channel analog outputs/power terminal


4.4.2. Performance & Specification

Item	Specification	
Power Voltage	24V DC	
The number of channel outputs	4	
Impedance of voltage (output)	>10ΚΩ	

Range of voltage (output)	Dual-pole: -5V~5V, -10V~10V. Single-pole: 0~5V, 0~10V.	
Range of current (output)	0~20mA, 4~20mA	
Resolution	16-bit	
Transfer time	1ms/channel	
Precision (common temperature 25°C)	Voltage ± 0.1%, current ± 0.1% (full range)	
Precision (environmental temperature	Voltage ± 0.3%, current ± 0.8%	
0~55°C)		
Internal Power	0.3W	
Power	0.9W	
Isolation	Coupler isolation	
Service	Firmware upgrade	

4.4.3. Installation Size

→ Installation Step:

- Please use 35mm standard DIN guide rail.
- > Open guide rail buckle of DA module, then embed DA module in the DIN guide rail.
- > Press fit guide rail buckle of DA module, then fix DA module in the DIN guide rail.

4.4.4. Terminal Definition

ightarrow 4-Channel Analog Outputs / IO Power Terminal

Number Mark Type Function	

1	l+	Current Output (+)	Channel 0 current Output (+)
2	V+	Voltage Output (+)	Channel 0 voltage Output (+)
3	V-	Voltage/current Output (-)	Channel 0 voltage/current Output (-)
4	SG	-	Shield
5	l+	Current Output (+)	Channel 1 current Output (+)
6	V+	Voltage Output (+)	Channel 1 voltage Output (+)
7	V-	Voltage/current Output (-)	Channel 1 voltage/current Output (-)
8	SG	-	Shield
9	NC	-	Reserved
10	NC	-	Reserved
11	l+	Current Output (+)	Channel 2 current Output (+)
12	V+	Voltage Output (+)	Channel 2 voltage Output (+)
13	V-	Voltage/current Output (-)	Channel 2 voltage/current Output (-)
14	SG	-	Shield
15	l+	Current Output (+)	Channel 3 current Output (+)
16	V+	Voltage Output (+)	Channel 3 voltage Output (+)
17	V-	Voltage/current Output (-)	Channel 3 voltage/current Output (-)
18	SG	-	Shield
19	E+24V	Power supply (+)	24V power supply input (+)
20	EGND	Power supply (-)	24V power supply input (-)

$\rightarrow \textbf{Terminal Wiring}$

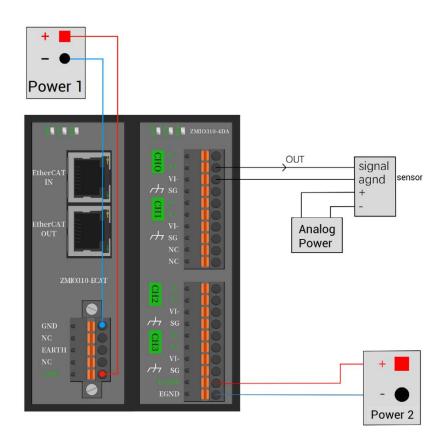
Please use tubular pre-insulated terminals and wire cable that is suitable to wire path to do user terminal wiring

→ Cable production steps:

- > Strip the cable insulation, the exposed copper part depends on the size of the tubetype pre-insulated terminal.
- Pass the conductor part of the cable into the tubular pre-insulated terminal and crimp it with a crimping pliers.

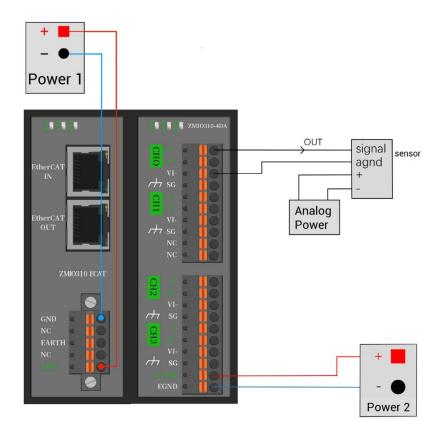
→Wire cable connection steps:

Press the spring of the terminal to insert the cable with the tubular pre-insulated terminal into the port.


> Loosen the spring of the terminal, pull the cable lightly to check whether the cable is firmly connected.

→Note:

- When routing terminal cables, avoid bundling them with cables that are with strong interference signals such as power cables, that is, please must route them separately.
- In the case of serious electromagnetic interference on site, shielded cables should be used to improve the anti-interference ability.
- It is not recommended to use the same power supply for the coupler module and the expansion sub-module. Especially in the case of severe electromagnetic interference on site, different power supplies must be used and they must not share the same ground.


4.4.5. Wiring Method

→ Voltage Output Terminal Wiring:

→ Current Output Terminal Wiring:

4.4.6. Malfunction Indication and Solution

Status Indication Light		n Light	Reason		Solution	
POW	RUN	ERR	Reason	Solution		
			Communication between	4	Check whether local expansion behind-	
ON ON	ON	ON ON	coupler and expansion	_	level interface is loosened.	
			sub-module breaks.		lever interface is loosened.	
	ON OFF		The pre-scanned sub	4	Check if the continuation submodule is	
ON			module and actual		lost, or be in malfunction	
UN			continuation sub module	4	Check if appears hot plug or discharger	
			are not totally matched.	4	Restart the power.	

Chapter V Usage Description

5.1. Power Consumption Calculation Example

For coupler module, here, take ZMIO310-ECAT communication module as the example.

External ECAT communication module is supplied by DC24V, internal coupler supplies 5V power for each module, the max output current is 2A. Except itself internal power consumption 1.6W, and it supplies 8.4W power for each expansion submodule. Please see below form for reference.

Model	Description	
ZMIO310-ECAT	ECAT communication module 1.6W	
ZMI0310-16DI	Input module 0.3W	
ZMI0310-16D0	Output module (NPN) 0.3W	
ZMIO310-16DOP	Output module (PNP) 0.3W	
ZMIO310-4AD	AD module 0.4W	
ZMIO310-4DA	DA module 0.3W	

5.2.10 Starting Number Configuration

5.2.1.EtherCAT Bus Expansion

If coupler uses ECAT communication module, IO starting numbers of IN input module and DO/DOP output modules are configured through "NODE_IO" command, AIO starting numbers of AD module and DA module are configured through "NODE_AIO" command.

NODE_IO				
Grammar	NODE_IO (slot, node) = iobase			
Davametava	slot	Controller bus slot No.	Default is 0	
Parameters	node	Device No.	Start from 0, 0-	

	iobase	IO start No.	Expanded input and output start	
			numbers are the same	
Example	NODE_I	O (0,0) = 32 'expanded IO start i	No. of Node 0 is 32	
	4 10	↓ IO start number only can be set as multiples of 8, like, 0, 8, 16, etc. If the		
	IO start number is 30, which means it should be set as 24.			
Notes	↓ Fir	Firstly, check the controller status to know the local IO maximum value of		
Notes	co	controller exactly, then use NODE_IO for avoid repetition. If expanded IO		
	No	No. and local IO repeat, they are valid simultaneously, so it is not		
	rec	commended.		

NODE_AIO					
Grammar	NODE_IO (slot, node) = aiobase				
	slot	Controller bus slot No.	Default is 0		
Parameters	node	Device No.	Start from 0, 0-		
raidilleteis	aiobase	AIO start No.	Expanded AD and DA start numbers		
	alubase	AIO Start No.	are the same		
Example	NODE_AIO (0,0) = 32 'expanded AIO start No. of Node 0 is 32				
	Firstly, check the controller status to know the local AIO maximum value				
Notes	of controller exactly, then use NODE_AIO for avoid repetition. If expanded				
Notes	AIO number and local AIO repeat, they are valid simultaneously, so it is				
	not	recommended.			

5.2.2.CAN Bus Expansion

If coupler uses CAN communication module, IO starting No. of input module and output module and AIO starting No. of AD module and DA module are configured through DIP (dial code switch). Dial 1-4 to set IO address, dial 5-6 to set CAN communication speed.

→ Digital IO Starting No. Configuration

The CAN expansion module uses bit1-4 of the DIP switch to set address combination value. Then, refer to current IO No., controller sets corresponding IO and AIO starting numbers o according to the address combination values. Dial each bit to OFF, the corresponding value is 0, when dial to ON, the corresponding value is 1. Address

combination value = dial code 4 × 8 + dial code 3 × 4 + dial code 2 × 2 + dial code 1.

If the controller itself contains 28 INs and 16 OPs, then the starting address of the first expansion module should exceed the maximum value of 28. According to below rule, the dial code should be set to the combination value 1 (binary combination value 0001, from right to left, dial code 1-4, at this time, dial 1 is set to ON, and the others are set to OFF), the IO No. on the expansion board = the expansion board No. value + the starting IO No. value, among them, the IOs that are vacant from 29-31 are not used. And subsequent extended boards continue to dial according to the IO points in turn.

The starting digital IO mapping No. starts from 16 and increases in multiples of 16. The distribution of digital IO numbers corresponding to different dial IDs is as follows.

DIP 1-4 combination value	Starting IO number	End IO number
0	16	31
1	32	47
2	48	63
3	64	79
4	80	95
5	96	111
6	112	127
7	128	143
8	144	159
9	160	175
10	176	191
11	192	207
12	208	223
13	224	239
14	240	255
15	256	271

→ Analog AD/DA Starting No. Configuration

The starting IO mapping No. of the analog AD starts from 8 and increases in multiples of 8. The starting IO mapping No. of the analog DA starts from 4 and increases in multiples of 4. The allocation of digital IO numbers corresponding to different dial code IDs is as follows:

DIP 1-4	Starting AD	End AD	Starting DA	End DA
combination value	number	number	number	number
0	8	15	4	7
1	16	23	8	11
2	24	31	12	15
3	32	39	16	19
4	40	47	20	23
5	48	55	24	27
6	56	63	28	31
7	64	71	32	35
8	72	79	36	39
9	80	87	40	43
10	88	95	44	47
11	96	103	48	51
12	104	111	52	55
13	112	119	56	59
14	120	127	60	63
15	128	135	64	67

→ Communication Speed Configuration

Dial code 5-6 to select CAN bus communication speed, speed combination value=dial code 6 \times 2 + dial code 5 \times 1, the combined value range is 0-3.

The corresponding speeds are as follows:

DIP 5-6	CANIO_ADDRESS high 8-bit value	CAN communication speed	
combination value	CANO_ADDITESS High or bit value	OAN COMMUNICATION SPECE	
0	0 (corresponds to decimal 128)	500KBPS (default value)	
1	1 (corresponds to decimal 256)	250KBPS	
2	2 (corresponding to decimal 512)	125KBPS	
3	3 (corresponding to decimal 768)	1MBPS	

Please select CAN communication speed ratio according to actual application. There
are some elements should be considered, such as, transfer distance, delay time, etc.
It is recommended to use 500K for Baud rate.

5.3. Read & Write Digital, Analog

Expanded IO, AD and DA can be operated through input and output instructions, like, IN, OP, AIN, AOUT.

Туре	Relative Module	Exact model	Instruction	Permission	View
Input	DI module	ZMI0310-16DI	IN	Read Only	IN
Output	DO / DOD modulo	ZMI0310-16D0	OD	Read & Write	OUT
Output	Output DO / DOP module	ZMI0310-16D0P	OP	Read & Wille	OUT
AD	AD module	ZMIO310-4AD	AIN	Read Only	AD/DA
DA	DA module	ZMIO310-4DA	AOUT	Read & Write	AD/DA

Check and set AD, DA module range through CANIO_INFO (can id, 17, submodule address), for more details, please refer to Basic Manuals.

5.4. Local Behind-level Expansion Address Description

After coupler module is power-on, it will scan local back-level expansion interface, and it will assign one expansion address for each scanned expansion submodule.

→Expansion example:

Like, the local back-level interface of ECAT communication module (ZMIO310-ECAT) connects to 3 input modules (ZMIO310-16DI), 2 output modules (ZMIO310-16DO / ZMIO310-16DOP), 1 AD module (ZMIO310-4AD) and 1 DA module (ZMIO310-4DA) in turn.

ECAT communication module starts to scan and assigns address when it is poweron. The submodule address is assigned starting from 0, then assign the address according to the connection sequence, that is, the expansion address of the first input module is 0, the expand address of DA module is 6.

Module sequence	Model name	Assigned address
ECAT Coupler	ZMIO310-ECAT	/
The first submodule	ZMIO310-16DI	0

The second submodule	ZMIO310-16DI	1
The third submodule	ZMIO310-16DI	2
The fourth submodule	ZMI0310-16D0	3
The fifth submodule	ZMI0310-16D0P	4
The sixth submodule	ZMIO310-4AD	5
The seventh submodule	ZMIO310-4DA	6

- > This expand address is used to build data dictionary, and the address assign is not influenced by expansion submodule type.
- For CAN communication module, the address assigned is only for internal control.

5.5. Function Configuration

The function configuration is only valid when coupler uses ECAT communication module to expand, and needs to use bus instruction SDO_WRITE to write SDO message, use SDO_READ instruction to read message.

\rightarrow Write Data Dictionary

SDO_WRITE				
Grammar	SDO_WRITE(slot, node, index, subindex, type, value)			
	Slot	Bus slot No.	Default is 0	
	Node Device No.		Start from 0, 0	
	Index	Data dictionary No.	-	
Parameter List	Subindex	Sub module No.	-	
	Туре	Data type	Refer to below form	
	Value	Data value	-	

→ Read Data Dictionary

SDO_READ				
Grammar	SDO_READ(slot, node, index, subindex, type, tablenum)			
Davamatav	Slot	Bus slot No.	Default is 0	
Parameter	Node	Device No.	Start from 0, 0	
List	Index	Data dictionary No.	-	

Subindex	Sub No.	-
Type	Data type	Refer to below
Туре	Data type	form
tablenum	Read the TABLE position that saves data	-

> For configurable functions, instruction usage and module function configuration, please refer to 6.4-expansion example.

$\to \textbf{Type: data type}$

Fill "type" value according to data type described by data dictionary.

"type" value	Corresponding Data Type
1	boolean
2	integer 8
3	integer 16
4	integer 32
5	unsigned 8
6	unsigned 16
7	unsigned 32

Chapter VI Data Dictionary Description

The data dictionary description only can be built by ECAT communication module, CAN module doesn't have data dictionary.

6.1.Format Description

Index	Subindex	Object	Default	Data	Data	Permission
(hex)	(hex)	name	value	range	type	Permission

- ♦ Index (hex): the index No. of object, a 4-bit hexadecimal system number.
- ♦ Subindex (hex): the subindex No. of object, a 2-bit hexadecimal system number.
- Object name: the name of object. For subindex, it is the name of subindex.
- Default value: the value is configured by default.
- Data range: for the object that only can be read, it is the read range. For the object that can be read and written, it is the configuration range.
- ♦ Data type: data type of object
- Permission: it is used to determine the object that only can read or be read and written.

6.2. Data Dictionary Overview

Below form shows all dictionary overviews of ZMIO310-ECAT communication module.

Note: the address of the expansion sub-module is numbered from 0 according to the order of access to the coupler, for example, the first expansion sub-module connected to the coupler has an address of 0, the second expansion sub-module has an address of 1, and so on.

Index	Subindex	Description	
5000h	-	Ser work mode for equipment.	
	00h	The category of work modes.	
	01h	Recover to initial state when power off, or hold the state when	
	0111	power off.	

	I	
	02h	Work mode: normal mode or update mode.
	-	Control dictionary.
(5001+expansion	00h	The number of configured types.
submodule address) h	01h	Configure or get the type of AD/DA analog range.
	02h	Configure AD analog channel switch.
(6000110.000000000	-	Status dictionary.
(6000+10*expansion submodule address) h	00h	The number of state dictionary subindex of DI module.
Submodule address) II	01h	Get the input state value of DI module channel.
	-	Control dictionary.
(7000+10*expansion	00h	The number of control dictionary subindex of DO/DOP module.
submodule address) h	01h	Configure DO/DOP module output value or get DO/DOP
	UIN	module output state
	-	Status dictionary.
	00h	The number of status dictionary subindex of AD module.
(6001+10*expansion	01h	Get the input status value of AD module channel 0.
submodule address) h	02h	Get the input status value of AD module channel 1.
	03h	Get the input status value of AD module channel 2.
	04h	Get the input status value of AD module channel 3.
	-	Control dictionary.
	00h	The number of control dictionary subindex of DA module.
(7001+10*expansion	01h	Configure the output value of DA module channel 0.
submodule address) h	02h	Configure the output value of DA module channel 1.
	03h	Configure the output value of DA module channel 2.
	04h	Configure the output value of DA module channel 3.

• For expansion submodule address allocation, please refer to 6.4 example.

6.3. Data Dictionary Details

Index	Subindex	Object	Default	Data Range	Data Type	Permission
		CANFIG_DATA	2	2	UNSIGND8	RO
5000h	00h	It indicates the ca	tegory of v	vork mode, n	amely, the num	ber of default
		subindex.				

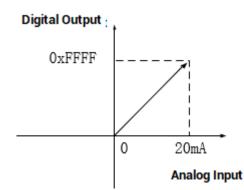
		The fixed value is	2.							
		CANFIG_1_INDENT	2	1 or 2	UNSIGND16	RW				
		In indicates the sta	ate after po	wer off, resu	me initial state	or keep state.				
		The usage of data	value:							
	01h	1. After commu	nication b	reaks, outpu	t states of DO,	/DOP module				
		and DA modu	le recover	initial values						
		2. After commu	nication b	reaks, outpu	t states of DO,	/DOP module				
		and DA modu	le keep cui	rrent states.	T					
		CONFIG_2_INDENT	0	0 or 5678	UNSIGND16	RW				
		Configure work mode								
		The usage of data value:								
	02h	0: normal mode								
		5678: update mode.								
		Note: after entered update mode, if not to update, please power-on								
		again, it will exit automatically, this update mode is used to update								
		firmware of ECAT communication module.								
		CONFIG_DATA	2	2	UNSIGND8	RO				
(5001 +		The number of default subindex, the fixed value is 2.								
expansion	00h	Expansion submodule address: the nearest expansion submodule								
submodule		address to coup			of following ot	her modules				
address) h		accumulate in ord	accumulate in order, namely, 0, 1, 2, 3							
	01h	CONFIG_1_INDENT	2	2~7 or	UNSIGND16	RW				
				10~15						

		nfigure the rang			alog mod	dul	e, or read range	e type v	
		Module Type		ata V	alue		Range Type		
				2			0~10V		
				3			-10V~10V		
		A.D.		4			4~20mA		
		AD		5			0~20mA		
				6			0~5V		
				7			-5~5V		
				10			0~10V		
				11			-10V~10V		
		DA		12			4~20mA		
		DA		13			0~20mA		
				14			0~5V		
				15		-5~5V			
02h	CONFI	G_2_INDENT	15		0~15		UNSIGND16	R	

Data value model, namely, correspond to 4 channels of AD module. AD Module Value (16 hexadecimal) 8 4 2 1 The meaning of each data value: Data Value O All channels are OFF. 1 Channel 0 is ON. 2 Channel 1 is ON. 3 Channel 0 and channel 1 are ON. 4 Channel 2 is ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0 and channel 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 2 and channel 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 1, 2 are ON. 14 Channel 2, 3 are ON. 15 All channels are ON. 16 Channel 1, 2, 3 are ON. 17 Channel 0, 2, 3 are ON. 18 Channel 0, 2, 3 are ON. 19 Channel 0, 2, 3 are ON. 10 Channel 1, 2, 3 are ON. 11 Channel 1, 2, 3 are ON. 12 Channel 1, 2, 3 are ON. 13 Channel 3 are ON. 14 Channel 3 are ON. 15 All channels are ON. 16 ON The number of default subindex, the fixed value is 1. Expansion submodule address: the nearest expansion submodule accumulate in order, namely, 0, 1, 2, 3			• 0	Configure AD module channel data.										
Value (16 hexadecimal) 8			• [ata	value model,	namely	, corr	espon	d to 4	cha	annels of	AD m	nodule	e.
The meaning of each data value: Data Value					AD Modu	le	(СНЗ	CH2	2	CH1	СН	0	
Data Value Range Type 0 All channels are OFF. 1 Channel 0 is ON. 2 Channel 1 is ON. 3 Channel 0 and channel 1 are ON. 4 Channel 2 are ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 12 Channel 2, 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 16000 + 10 Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3				Va	alue (16 hexad	decimal))	8	4		2	1		
0 All channels are OFF. 1 Channel 0 is ON. 2 Channel 1 is ON. 3 Channel 0 and channel 1 are ON. 4 Channel 2 is ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 1 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 12 Channel 2, 2, 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 15 All channels are ON. 1 UNSIGNDB RO • The number of default subindex, the fixed value is 1. • Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3			• T	he	meaning of ea	ach data	valu	ie:						
1 Channel 0 is ON. 2 Channel 1 is ON. 3 Channel 0 and channel 1 are ON. 4 Channel 2 is ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 0 and channel 3 are ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 2 and channel 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 16000 + 17 The number of default subindex, the fixed value is 1. • Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module address) h					Data Value	e		R	ange 1	Тур	e			
2 Channel 1 is ON. 3 Channel 0 and channel 1 are ON. 4 Channel 2 is ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 1 and channel 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 15 All channels are ON. 16000 + 10 The number of default subindex, the fixed value is 1. • Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3					0		All cha	nnels	are	OFF.				
3 Channel 0 and channel 1 are ON. 4 Channel 2 is ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 2 and channel 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO The number of default subindex, the fixed value is 1. Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3					1		Cha	nnel 0	is (ON.				
4 Channel 2 is ON. 5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO • The number of default subindex, the fixed value is 1. • Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3					2			Cha	nnel 1	is (ON.			
5 Channel 0 and channel 2 are ON. 6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO The number of default subindex, the fixed value is 1. The number of default subindex, the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3					3 Channel 0 and channel 1 are ON.					N.				
6 Channel 1 and channel 2 are ON. 7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO The number of default subindex, the fixed value is 1. • Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3					4 Channel 2 is ON.									
7 Channel 0, 1, 2 are ON. 8 Channel 3 is ON. 9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 2 and channel 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO • The number of default subindex, the fixed value is 1. • Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3					5	С	hanr	nel 0 aı	nd cha	ann	el 2 are C	N.		
8					6 Channel 1 and channel 2 are ON.					N.				
9 Channel 0 and channel 3 are ON. 10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 16000 + 10* O0h Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module address) h Oxoooo					7		C	Channe	el 0, 1,	2 a	re ON.			
10 Channel 1 and channel 3 are ON. 11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO Expansion submodule address: the nearest expansion submodule accumulate in order, namely, 0, 1, 2, 3 Ox0000 Ox00000 Ox0000 Ox0000 Ox0000 Ox0000 Ox0000 Ox0000 Ox00000 Ox0000 Ox00000 Ox000000 Ox00000 Ox00000 Ox00000 Ox00000 Ox00000 Ox00000 Ox000000 Ox000000 Ox000000 Ox000000 Ox000000 Ox00000000 Ox0000000 Ox0000000000					8			Cha	nnel 3	is (ON.			
11 Channel 0, 1, 3 are ON. 12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3 Ox0000					9	С	Channel 0 and channel 3 are ON.					N.		
12 Channel 2 and channel 3 are ON. 13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 15 All channels are ON. 10* O0h Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module address) h Ox0000 Ox00000 Ox000000 Ox000000 Ox000000 Ox000000 Ox000000 Ox000000 Ox000000 Ox00000000 Ox0000000000					10	С	hanr	nel 1 ai	el 1 and channel 3 are ON.					
13 Channel 0, 2, 3 are ON. 14 Channel 1, 2, 3 are ON. 15 All channels are ON. 15 All channels are ON. 10 UNSIGND8 RO 10 Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3 0x0000					11		C	Channe	el 0, 1,	3 a	re ON.			
14 Channel 1, 2, 3 are ON. 15 All channels are ON. 15 IN_GENERIC 1 1 UNSIGND8 RO					12	С	hanr	nel 2 aı	nd cha	ann	el 3 are C	N.		
15 All channels are ON. IN_GENERIC 1 1 UNSIGND8 RO					13		C	Channe	el 0, 2,	3 a	re ON.			
IN_GENERIC 1 1 UNSIGND8 RO (6000 +					14		C	Channe	el 1, 2,	3 a	re ON.			
(6000 + 10* Oth Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3 address) h Ox0000					15			All cha	annels	s ar	e ON.			
10★ 00h Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other module accumulate in order, namely, 0, 1, 2, 3 address) h 0x0000			IN.	_GI	ENERIC	1		1		UN	ISIGND8		RO	
expansion address to coupler is 0, addresses of following other module submodule accumulate in order, namely, 0, 1, 2, 3 address) h	(6000 +		• T	he	number of de	fault sul	oinde	x, the	fixed v	valu	ıe is 1.			
submodule accumulate in order, namely, 0, 1, 2, 3 address) h 0x0000	10*	00h	• E	Expansion submodule address: the nearest expansion subm					ubmod	dule				
address) h 0x0000	expansion		а	address to coupler is 0, addresses of following other modul						ules				
	submodule		а	iccu	mulate in ord	ler, name	ely, 0,	, 1, 2, 3	B					
ן סוועוטוטוטוטוטוטוטוטוטוטוטוטוטוטוטוטוטוט	address) h	01h	IN	_GEI							RO			
~0xFFFF								~0xFF						

		Get the input	Get the input state value of DI module channel.								
		The usage of	of data	value: 4	-digit h	exadec	imal nu	ımber is	s conve	rted int	to
		16-bit bina	ry num	ber, eac	h 1-bit	repres	ents th	e input	status	of eac	:h
		channel.									
		For exampl	e: the o	obtaine	d input	value i	s 0x0F	F0, and	the co	ntent o	of
		the channe	the channel status is as follows: CH CH CH CH CH CH CH CH CH								
		Channal									
		Channel	15	14	13	12	11	10	9	8	
		Bit (binary)	0	0	0	0	1	1	1	1	
		Hexadecimal	CH CH CH CH CH CH CH								
		Channel									
		Chamilei	7	6	5	4	3	2	1	0	
		Bit (binary)	1	1	1	1	0	0	0	0	
		Hexadecimal		ſ	=			()		
		OUT_GENERI	С	1		1	UNS	SIGND8		RO	
(7000 +		The number	r of def	ault sul	oindex,	the fixe	d value	e is 1.	•		
10*	00h	 Expansion 	submo	dule ad	ddress:	the ne	earest	expans	ion su	bmodu	le
expansion		address to	address to coupler is 0, addresses of following other modules								
submodule		accumulate	accumulate in order, namely, 0, 1, 2, 3								
address) h	01h	OUT_GEN_IN	г1	0	0:	к0000	00 UNSIGND16 RW				
	UIII	OUT_GLIN_IIN	1 1	U	~(xFFFF	UNS	ו טאטו	<u> </u>	1177	




		•	Configure th	ne outp	out valu	ie of D	O/DOP	modul	e chanı	nel, or	get the	
			output state	of DO	/DOP m	odule o	channe	l.				
		•	The usage of	of data	value:	4-digit	hexad	lecimal	numbe	r is co	nverted	
			into 16-bit b	oinary r	number,	each 1	-bit re	present	s the ou	utput s	tatus of	
			each channo	el.								
			For example	e: the c	onfigur	ed outp	ut valu	ıe is 0x	1FF1, aı	nd the	content	
			of the chanr	nel stat	us is as	follow	s:					
			Channel	СН	СН	СН	СН	СН	СН	СН	СН	
			Chamilei	15	14	13	12	11	10	9	8	
			Bit (binary)	0	0	0	0	1	1	1	1	
			Hexadecimal		1	l			F	:		
			Channel	СН	СН	СН	СН	СН	СН	СН	СН	
			Onamie	7	6	5	4	3	2	1	0	
			Bit (binary)	1	1	1	1	0	0	0	0	
			Hexadecimal		F	=			1			
			IN_GENERIC		4		4	UNSI	GND8	F	30	
		The number of default subindex, the fixed value is 4.										
	00h	Expansion submodule address: the nearest expansion submodule address to coupler is 0, addresses of following other modules										
		address to o	coupler	is 0,	addres	sses o	f follov	wing ot	ther m	odules		
		accumulate in order, namely, 0, 1, 2, 3										
			IN_GEN_INT1		0		000	UNSIG	SND16	F	30	
			Get innut stat	state value of AD module channel 0.								
(6001 +			The meaning			module	. Criarii	ici o.				
10*			0x0000~0xFF			scale	value o	f analo	a which	n is cor	verted	
expansion			from gained a						g,c.			
submodule			For example:	_		ange o	f AD m	odule is	s 0~5V:			
address) h	01h											
			Dig	lital O	utput †							
				0xFFF	F -		-51					
							/¦					
						/						
					-	0	5V	-				
						~			out			
							Alidi	og In	Jul			

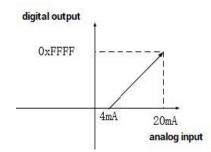
	Digital converted fr	om AD is r	epresented b	by Y.					
	Analog gained fron	n DA is rep	resented by 2	Χ .					
	And AD input value	-	_		raphic: (Y-0)/				
	(0xFFFF-0) = (X-0) / (5\			_	[
			_		o V وبرادير واير				
	_	Value X is the gained known condition of current AD module, value Y is priverted from AD through PC side. Same, value Y is gained from PC, then							
		_		ue i is gaineu	iioiii FG, tileii				
	X value can be calculate	eu reversei							
	IN_GEN_INT2	0	0x0000 ~0xFFFF	UNSIGND16	RO				
	Get the input state	e value of A	AD channel 1						
	The meaning of date	ate value:							
	0x0000~0xFFFF n	neans the	scale value o	of analog, which	is converted				
	from gained analo	g from AD							
	For example: if the	e current ra	ange of AD m	odule is -5~5V	:				
	District Out								
	Digital Out	out	1						
	0xFFFF								
		!							
02H	0x7FFF -	·	1						
		-5V	0 5V						
				Analog Input	t				
	Digital converted fr	om AD is r	epresented b	by Y.					
	Analog gained fron	n DA is rep	resented by 2	Κ.					
	And AD input value	e can be c	alculated fro	m the above g	raphic: (Y-0)/				
	(0xFFFF-0) = [X-(5V)] /	[5-(-5V)], r	namely, Y = 0	xFFFF* [X-(5V)]	/ [5V-(-5V)].				
	Value X is the gaine	ed known o	condition of c	current AD mod	ule, value Y is				
	converted from AD thro	ugh PC sic	de. Same, val	ue Y is gained	from PC, then				
	X value can be calculate			J	·				
			0x0000						
	IN_GEN_INT3	0	~0xFFFF	UNSIGND16	RO				
	Get the input state	value of /							
03h	The meaning of date		ib originiei Z	•					
	_		coale value -	of analog which	io converted				
	0x0000~0xFFFF n			n analog, willer	i is converted				
	from gained analo	y Irom AD	•						

Digital converted from AD is represented by Y.

Analog gained from DA is represented by X.

And AD input value can be calculated from the above graphic: (Y-0)/(0xFFFF-0) = [X-0]/(20mA-0)], namely, Y = 0xFFFFF*/20mA.

Value X is the gained known condition of current AD module, value Y is converted from AD through PC side. Same, value Y is gained from PC, then X value can be calculated reversely.


		0x0000		
IN_GEN_IN4	0		UNSIGND16	RO
		~0xFFFF		

- Get the input state value of AD channel 3.
- The meaning of date value:

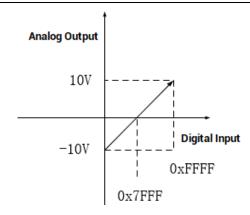
0x0000~0xFFFF means the scale value of analog, which is converted from gained analog from AD.

For example: if the current range of AD module is 4~20mA:

04h

Digital converted from AD is represented by Y.

Analog gained from DA is represented by X.


And AD input value can be calculated from the above graphic: (Y-0)/(0xFFFF-0) = [X-4mA] / (20mA-4mA)], namely, Y = 0xFFFF* / (X-4Ma) / (20mA-4mA).

Value X is the gained known condition of current AD module, value Y is converted from AD through PC side. Same, value Y is gained from PC, then

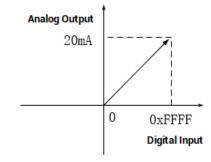
		X value can be calculated reversely.
		OUT_GENERIC 4 4 UNSIGND8 RO
		The number of default subindex, the fixed value is 4.
	00h	Expansion submodule address: the nearest expansion submodule
		address to coupler is 0, addresses of following other modules
		accumulate in order, namely, 0, 1, 2, 3
		OUT_GEN_INT1 0 0x0000 UNSIGND16 RW
		Get the input state value of DA channel 0.
		The meaning of date value:
		0x0000~0xFFFF means the scale value of analog, input scale values
		from PC output analogs converted from DA.
		For example: if the current range of DA module is 0~10V:
		Analog Output
(10V
(7001 +		
10*	01h	
expansion		
submodule address) h		0 0xFFFF
address) II		Digital Input
		Analog converted from DA is represented by Y.
		Digital input from PC, namely, the scale value is represented by X.
		And DA output value can be calculated from the above graphic: (Y-0)/
		(10V-0) = (X-0)/(0xFFFF - 0), namely, $Y = 10*X/0xFFFF$.
		Value X is the known condition of current PC side, then value Y can be
		gained through DA conversion. Same, get DA output value firstly, then
		calculate value X reversely.
		OUT_GEN_INT2 0 0x0000 0x0FFFF UNSIGND16 RW
		Get the output state value of DA channel 1.
	02h	The meaning of date value:
		0x0000~0xFFFF means the scale value of analog, input scale values
		from PC output analogs converted from DA.
		For example: if the current range of DA module is -10~10V:

Analog converted from DA is represented by Y.

Digital input from PC, namely, the scale value is represented by X.

And DA output value can be calculated from the above graphic: Y-(-10V)]/ [10V-(-10V)] = (X-0)/ (0xFFFF -0), namely, Y = [10V-(-10V)] *X / 0xFFFF - 10V.

Value X is the known condition of current PC side, then value Y can be gained through DA conversion. Same, get DA output value firstly, then calculate value X reversely.


		0x0000		
OUT_GEN_INT3	0		UNSIGND16	RW
		~0xFFFF		

- Get the output state value of DA channel 2.
- The meaning of date value:

0x0000~0xFFFF means the scale value of analog, input scale values from PC output analogs converted from DA.

For example: if the current range of DA module is 0~20mA:

03h

Analog converted from DA is represented by Y.

Digital input from PC, namely, the scale value is represented by X.

And DA output value can be calculated from the above graphic: (Y-0)/

(20mA-0) = (X-0)/(0xFFFF-0), namely, Y = 20mA *X / 0xFFFF.

Value X is the known condition of current PC side, then value Y can be gained through DA conversion. Same, get DA output value firstly, then

	calculate value X revers	sely.								
	OUT_GEN_INT4	0	0x0000 ~0xFFFF	UNSIGND16	RW					
	Get the output sta	ite value of	DA channel	3.						
	The meaning of d	The meaning of date value:								
	0x0000~0xFFFF r	neans the	scale value o	of analog, input	scale values					
	from PC output analogs converted from DA. For example: if the current range of DA module is 4~20mA: Analog Output									
		20mA -	OmA							
04h		4mA		-						
			0 0xF	FFF						
			Digi	ital input						
	Analog converted	from DA is	represented	by Y.						
	Digital input from I	PC, namely	the scale va	lue is represent	ted by X.					
	And DA output va	lue can be	calculated	from the above	graphic: (Y-					
	4mA)/ (20mA-4mA) =	(X-0)/ (0x	FFFF -0), na	amely, Y = (20r	mA-4mA)*X /					
	0xFFFF + 4mA.									
	Value X is the know	wn conditio	on of current	PC side, then v	alue Y can be					
	gained through DA co	nversion.	Same, get D	A output value	e firstly, then					
	calculate value X revers	sely.								

6.4. Expansion Example

The data dictionary 5000h must be created, others are created or not according to connected extended sub-modules.

An extended sub-module is connected each time, a corresponding state value data dictionary will be created. For AD module and DA module, the corresponding control data dictionary will also be created.

6.4.1. Expansion Submodule Address Allocation

For example: the local post-level interface of the ECAT communication module (ZMIO310-ECAT) is sequentially connected to 3 input modules (ZMIO310-16DI), 2 output modules (ZMIO310-16DO or ZMIO310-16DOP), 1 AD module (ZMIO310-4AD) and 1 DA module (ZMIO310-4DA), and the slot No. and device No. are both 0 by default.

The address of the expansion sub-module is numbered from 0, and the address of the expansion sub-module closest to the coupler module is 0, the addresses of other sub-modules are sequentially accumulated by 1, that is, the addresses of the DI modules are 0, 1, and 2 respectively, and the addresses of the DO modules are respectively 3, 4, AD address is 5, DA address is 6.

Then, data dictionary is created according to above:

Address	Remark	Dictionary description			
Address	Remark	Rule	Dictionary		
-	-	-	5000h		
0	The first DI module	Oh. A	6000h		
1	The second DI module	Status dictionary: (6000+10*expansion	6010h		
2	The third DI module	submodule address) h	6020h		
3	The first DO module	Control dictionary: (7000+10*expansion	7030h		
4	The second DO module	submodule address) h	7040h		
		Status dictionary: (6001+10*expansion	6051h		
5	The first AD module	submodule address) h Control dictionary: (5001+expansion submodule address) h	5006h		
	The first DA module	Control dictionary: (7001+10*expansion submodule address) h	7061h		
6	The first DA module	Control dictionary: (5001+expansion submodule address) h			

- Please refer to Chapter 6.3 for dictionary details.
- The data dictionary corresponding to the address 0~6 will only be created when the
 corresponding expansion module is connected, that is, it will not be created when
 other modules are connected.

6.4.2.Output State Configuration after Communication Breaks

	This function is used to keep the output state of DA/DO/DOP	
	after the master-slave station communication is interrupted.	
	There are two modes, and the default is mode 2.	
Francisco de carintico	Mode 1: After the communication breaks, the output state is	
Function description	the initial value (the output is 0, DA is the minimum	
	value of the current range).	
	Mode 2: After the communication breaks, the output state is	
	the state when it was disconnected.	
OL:+	Digital output module: ZMIO310-16DO, ZMIO310-16DOP.	
Object to use	Analog output module: ZMIO310-4DA.	
Data dictionary	5000h (refer to 6.3 for details)	
Examples	SDO_WRITE(0,0,\$5000,1,6,1) 'configure as mode 1	
	SDO_WRITE(0,0,\$5000,1,6,2) 'configure as mode 2	

• This function is valid for output and DA expanded by the current coupler.

6.4.3. Channel Enable Configuration

	This function is used to control whether the input channel of	
	the AD module is enabled or not. There are 16 channel enabling	
Function description	modes, and the default is to enable all channels.	
runction description	A four-bit binary number represents the enable status of four	
	channels, each bit is a channel, the lowest bit is channel 0, and	
	the highest bit is channel 3.	
Object to use	Analog input module: ZMIO310-4AD.	
	5006h: 5001h + extension No. of the corresponding AD	
Data dictionary	module, please refer to Chapter 6.4.1 for sub-module address	
	assignment	
	'5006h is AD module control dictionary	
Examples	SDO_WRITE(0,0,\$5006,2,6,0) 'full channels are OFF.	
	SDO_WRITE(0,0,\$5006,2,6,3) 'channel 0, 1 are ON.	

SDO_WRITE(0,0,\$5006,2,6,12)	'channel 2, 3 are ON.
SDO_WRITE(0,0,\$5006,2,6,15)	'full channels are ON.

• This function is valid for current AD module.

6.4.4. Range-Switch Configuration

	This function is used to switch the range of the input channel
Function description	of the AD module (or the output channel of the DA module), and
	the default value of both modules is the range of 0~10V
	The measuring range corresponds to the type number of the
	expansion sub-module, please refer to the table below.
Object to year	Analog input module: ZMIO310-4AD.
Object to use	Analog output module: ZMIO310-4DA.
	5007h, 5006h: 5001h + extension No. of the corresponding AD
Data dictionary	module or DA module, please refer to Chapter 6.4.1 for sub-
	module address assignment.
	'5007h is the DA module control dictionary, 5006h is the AD
	module control dictionary.
	SDO_WRITE(0,0,\$5006,1,6,3)
	'AD module is switched to -10~10V range
Examples	SDO_WRITE(0,0,\$5006,1,6,5)
Examples	'AD module is switched to 0~20mA range
	SDO_WRITE(0,0,\$5007,1,6,11)
	'DA module is switched to -10~10V range
	SDO_WRITE(0,0,\$5007,1,6,13)
	'DA module is switched to 0~20mA range

Type number description:

Type No.	Type name	Module type	Corresponding range
1	ZM1111	Input module	
2	ZM1112	AD module	0~10V
3	ZM1113	AD module	-10~10V
4	ZM1114	AD module	4~20mA

5	ZM1115	AD module	0~20mA
6	ZM1116	AD module	0~5V
7	ZM1117	AD module	-5~5V
9	ZM2111	Output module	
10	ZM2112	DA module	0~10V
11	ZM2113	DA module	-10~10V
12	ZM2114	DA module	4~20mA
13	ZM2115	DA module	0~20mA
14	ZM2116	DA module	0~5V
15	ZM2117	DA module	-5~5V

- This function is valid for current AD module (or DA module).
- One AD module (or DA module) cannot use multiple ranges, and all channels use the same one range, different modules can match with multi-range.
- Type No.1 and No.9 are fixedly used by input module and output module. Type No.2~No.7 are used only by AD module, Type No.10~No.15 are used only by DA module.
- When using AD module, if input voltage (or current) exceeds the range, then it will keep with the maximum value.

6.4.5.Get Channel Input State Value of AD Module

	This function is only used to read channel input state value of	
Function description	AD module, and one of AD module has 4 channels, they are	
	channel 0, channel 1, channel 2 and channel 3.	
Object to use	Analog input module: ZMIO310-4AD.	
	6051h: 6001h + extension No. of corresponding AD module *	
Data dictionary	10, please refer to Chapter 6.4.1 for sub-module address	
	assignment.	
	'6051h is AD module state dictionary	
Examples	'read data are saved into TABLE, then get the data through	
	TABLE command	
	SDO_READ (0,0,\$6051,1,6,100) 'get input state of channel 0	

? TABLE(100)	'print read data of channel 0
SDO_READ (0,0,\$6051,2,6,100)	'get input state of channel 1
? TABLE(100)	'print read data of channel 1
SDO_READ (0,0,\$6051,3,6,100)	'get input state of channel 2
? TABLE(100)	'print read data of channel 2
SDO_READ (0,0,\$6051,4,6,100)	'get input state of channel 3
? TABLE(100)	'print read data of channel 3

6.4.6.Get Channel Input State Value of DI Module

	This function is only used to read channel input state value of
	DI module, and one of DA module has 16 channels (channel 0-
Function description	15).
	Four hexadecimal numbers are converted to sixteen binary
	numbers, each bit represents the input status of each channel.
Object to use	Analog input module: ZMIO310-16DI.
	6000h, 6010h, 6020h: 6000h + extension No. of corresponding
Data dictionary	DI module * 10, please refer to Chapter 6.4.1 for sub-module
	address assignment.
	'6000h, 6010h, 6020h are DI module status dictionary
	'The read data is stored in the TABLE, you need to use the
	TABLE command to get the content.
	SDO_READ(0,0,\$6000h,1,6,100)
	'get the 16 channel input status of the first DI module
	? TABLE(100)
	'print the channel status of the first DI module
Examples	SDO_READ(0,0,\$6010h,1,6,100)
	'get the 16 channel input status of the second DI module
	? TABLE(100)
	'print the channel status of the second DI module
	SDO_READ(0,0,\$6020h,1,6,100)
	'get the 16 channel input status of the third DI module
	? TABLE(100)
	'print the channel status of the third DI module

6.4.7. Configure Channel Output Value of DO Module

	<u> </u>	
	This function is only used to configure the channel output	
	value of DO module, and one of DO module has 16 channels	
	(channel 0-15).	
Function description	Four hexadecimal numbers are converted to sixteen binary	
	numbers, each bit represents the output status of each	
	channel.	
Object to use	Analog output module: ZMIO310-16DO	
	7030h, 7040h: 7000h + extension No. of corresponding DO	
Data dictionary	module * 10, please refer to Chapter 6.4.1 for sub-module	
	address assignment.	
	'7030h, 7040h are the DO module control dictionary	
	'configure the channel state of the first DO module's high 8 bits	
	to ON, and the low 8 bits to OFF	
Examples	SDO_WRITE(0,0,\$7030h,1,6, 0xFF00)	
	'configure the channel state of the second DO module's high 8	
	bits to OFF, and the low 8 bits to ON.	
	SDO_WRITE(0,0,\$7040h,1,6, 0x00FF)	

Note: if SDO command is used to configure DO output, it is only valid before EtherCAT START, because after EtherCAT START, controller will open PDO command to configure DO channel output automatically, PDO real-time is high, and it covers DO channel data of SDO configuration. PDO command corresponds to OP in ZBasic, please refer to ZBasic manual for specific usage of OP.

6.4.8. Configure Channel Output Value of DA Module

	This function is only used to configure the channel output	
Function description	value of DA module, and one of DA module has 4 channels, they	
	are channel 0, channel 1, channel 2, and channel 3.	
Object to use	Analog output module: ZMIO310-4DA.	
Data dictionary	7061h: 7001h + extension No. of corresponding DA module *	
	10, please refer to Chapter 6.4.1 for sub-module address	

	assignment.	
	'7061h is the DA module control dictionary	
	SDO_WRITE(0,0,\$7061,1,6,65535)	
	'configure output value of channel 0 as 0xFFFF	
	SDO_WRITE(0,0,\$7061,2,6,65535)	
Examples	'configure output value of channel 1 as 0xFFFF	
	SDO_WRITE(0,0,\$7061,3,6,65535)	
	'configure output value of channel 2 as 0xFFFF	
	SDO_WRITE(0,0,\$7061,4,6,65535)	
	'configure output value of channel 3 as 0xFFFF	

Note: if SDO command is used to configure DA output, it is only valid before EtherCAT START, because after EtherCAT START, controller will open PDO command to configure DA channel output automatically, PDO real-time is high, and it covers DA channel data of SDO configuration. PDO command corresponds to AOUT in ZBasic, please refer to ZBasic manual for specific usage of AOUT.

Chapter VII Run and Maintain

The correct operation and maintenance of the motion controller can not only guarantee and extend the life cycle of the equipment itself, but also take technical management measures to prevent equipment performance degradation or reduce the probability of equipment failure according to the pre-specified plan or the corresponding technical conditions.

7.1. Regular Inspection and Maintenance

The working environment has an impact on the controller. Therefore, it is usually inspected regularly based on the inspection cycle of 6 months to 1 year. The inspection cycle of the motion controller can be appropriately adjusted according to the surrounding environment to make it work within the specified standard environment.

Check item	Check content	Inspection standards
power supply	Check whether the voltage is rated	DC 24 V (-10%~10%)
	Whether the ambient temperature is within the specified range (when installed in the cabinet, the temperature inside the cabinet is the ambient temperature)	-10°C - 55°C
surroundings	Whether the ambient humidity is within the specified range (when installed in the cabinet, the humidity in the cabinet is the ambient humidity)	
	Is there direct sunlight	No
	With or without droplets of water, oil, chemicals, etc.	No
	Whether there is dust, salt, iron filings, dirt	No
	Whether there is corrosive gas	No
	Whether there are flammable and explosive gases or articles	No

	Whether the controller is subjected to vibration or shock	Should be within the range of vibration resistance and impact resistance
	Is the heat dissipation good	Keep good ventilation and heat dissipation
Installation and Wiring Status	Whether the basic unit and the expansion unit are installed firmly	The mounting screws should be tightened without loosening
	Whether the connecting cables of the basic unit and the expansion unit are fully inserted	The connection cable cannot be loosened
	Are the screws of the external wiring loose	Screws should be tightened without loosening
	Whether the cable is damaged, aged, cracked	The cable must not have any abnormal appearance

7.2. Common Problems

Problems	Suggestions		
	1. Check whether the limit sensor works normally, and		
	whether the "input" view can watch the signal change of		
No signal sames to the	the limit sensor.		
No signal comes to the	2. Check whether the mapping of the limit switch is		
input.	correct.		
	3. Check whether the limit sensor is connected to the		
	public end of the controller.		
	Check whether the led of Ethernet is ON or not.		
Ethernet con't connect	2. Check whether the network cable suits the		
Ethernet can't connect	requirements.		
	3. Check whether the correct ethernet port is inserted.		
· · · · ·	Check whether IO power is needed.		
The output does not	2. Check whether the output No. is consistent with		
work.	operated one.		
No voltage and current	Check whether IO power is needed.		

signal for input	2.	Check whether the output No. is consistent with	
channel		operated one.	
	1.	Check whether the power of the power supply is	
		sufficient. At this time, it is best to supply power to the	
POWER led is ON, RUN		controller separately, and restart the controller after	
led is OFF.		adjustment.	
	2.	Check whether the ALM light flickers regularly	
		(hardware problem).	
RUN led is ON, ERR led	1.	Program running error, please check ZDevelop error	
is ON.		code, and check application program.	
	1.	Check the CAN wiring and power supply circuit, whether	
		the 120 ohm resistor is installed at both ends.	
	2.	Check the master-slave configuration, communication	
CAN expansion		speed configuration, etc.	
module cannot be	3.	Check the DIP switch to see if there are multiple	
connected.		expansion modules with the same ID.	
connected.	4.	Use twisted-pair cables, ground the shielding layer, and	
		use dual power supplies for severe interference (the	
		main power supply of the expansion module and the IO	
		power supply are separately powered)	